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Let V(N, It) C C(X) be a set of rationals of the form BIL"" with B, L E C(X),
L(x) > 0 "Ix E X, and /1- E N; we study existence of best approximations for
extensions of V(N, /1-) into the space of regulated functions R(X). We show
existence of best approximations for an extension Vo(N, /1-) which is maximal in the
sense that the quality of approximation on Vo(N, /1-) is the best we can achieve by
any proper rational extension of V(N, /1-).

Then we consider the problem of characterization of minimal extensions of
V(N, /1-) which possess stabilized best approximations. We show that a quasi­
minimal extension VO(N, /1-) similar to that defined by Rice [4, p. 82] in general
is no minimal extension and give a necessary and sufficient condition for VO(N, 1)
being minimal.

Finally we want to give some sufficient conditions under which V"(N, /1-) is a
minimal extension for large enough It E N.

I. REGULATED FUNCTIONS

Let XC Rn be a compact connected subset of Rn and consider the class
R(X) of regulated functions f: X -)0 R satisfying:

(i) fis continuous \Ix rt Xf , where X f is I.e. in X.
(ii) J(x)] M < w \Ix rt X f .

(iii) f(x) = HI11JCx) .. ;-- A1Ax» x E X] .

For a definition of first category (I.e.) sets Xf in X see Kantorowitsch­
Akilow [2, p. 23], and the numbers Inf(X) and MJCx) for x E Xr are defined by

Inix) ==., inf(lim inff(xJ),
J---'t(fj

Mf(x) = sup(lim supf(xj» x E Xf ,
)_)rj)

where the infimum and the supremum are taken over all sequences (Xj) C/. Xr ,
Xj --)0 X E Xf •

Condition (iii) above should be understood in the sense that although we
assign fixed values to f on Xf we still may have multivalued convergence:

f( y) --)0 [Inf(X), A1ix)]
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for y --)0 x E Xf .



RATIONAL CHEBYSHEV APPROXIMATION 13

Examples for regulated functions are j(x) = sin(7T/x) E R(I) with j(O) = °
and j ( y) ~ I for y ~ 0, and in two dimensions

x = (u, v)' E R2 andj(O) = t andj( y) ~ [0, l]y ~ 0, with I = [-1, -i--l]in
both examples.

Introducing condition (iii) rather than dealing with the multivalues allows
us to define addition and scalar multiplication on R(X) in the usual way; it is
straightforward to show that

(f + g)(x) = Mmf+g(x) + Mf+uCx)) = j(x) + g(x), X E Xf V X A ,

(f3f)(x) = Hml3f(X) + M 13tCx)) = f3j(x), x E X f ,

which then gives the following result:

LEMMA. Letf, g E R(X). Then we have

sup Ij(x) - g(x) I = sup Ij(x) - g(x)!.
xtXtvXg XEX

The proof offers no further insight and is therefore omitted; an important
result however of this lemma is that R(X) is a normed space with the norm

1:/11 = sup Ij(x)!.
xt Xt

2. REGULATED EXTENSIONS OF RATIONALS

Let S, T C eeX) be two finite-dimensional subspaces of eeX) with
normalized bases {ul , ••• , Uh,} and {VI' ... ' VI} and put N = k + 1. With

h'

Ba = L aiui,
i~1

I

L b = L bivi ,
i~1

the classical problem then is to find a best rational approximation to f E R(X)
on the set

V(N,p,) = F,iP) C eeX),

with the mapping

FIJ, : RN~ eeX),
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and the parameter set

P = {c = (a, by EO RN I a EO Rk; b EO Rl, ii b II ~= 1,

Lb(x) > 0 'v'x EO X},

and it is well known that YeN, jL) in general is no existence set even if we
restrictfEO C(X).

Hence we want to consider extensions of F" mapping certain extensions of
Pinto R(X). To do this we need the following basic assumption: Any function
L b EO T, II b II = 1 has at most a I.e. zero-set X b in X. Furthermore we make the
assumption P * 0 to avoid consideration of trivial cases.

We first consider the following two extensions of P:

P* = {c EO RN Ia EO Ric; b EO RI, II b II = I},

Po = {c EO P* I £'"c EO R(X)},

and define the numbers

M * = inf{j3 I 3c EO P * : i B,,(x) - lex) Lb"(x)i ~ j3 i Lb(x)I" 'v'x EO X,

M o = inf{j3 I 3c EO Po : II F",c - J:I ~ j3}.

Clearly we have 0 ~ M * ~ Mo and we can generalize the lemma in Section 4
of Goldstein [1].

LEMMA. M * = Mo ; M * > 0 if and only if f ~ Vo(N, jL) = FiPo);
CEO P * and I B,,(x) - lex) Lv"(x)i ~ M * I Lv(x)I" 'v'x EO X are consistent; and
C EO Po and II F",c - fil ~ M o are consistent.

The proof is essentially that of Goldstein [1] and hence omitted. It should
be noted that both M * and M o depend on the fixed exponent jL EO N chosen,
and we can interprete the result in the sense that for a fixed jL EO N the best
quality of approximation we can expect by any proper extension of YeN, jL)
is M * , and that this quality actually is achieved on the set Vo(N, jL) C R(X).
Thus we want to call Vo(N, jL) a maximal extension of V(N,jL) and note that
this property does not depend on the specific function f EO R(X) we wish to
approximate.

To give a simple example consider the Heaviside function H EO R(I):

1

+1
H(x) = ~

and rationals of the form

for x > 0,
for x = 0,
for x < 0,

X EO I = [-1, +1],

F1 ,c = (a1x + a2 I x 1)/(b1 + b2x) EO R(I),

where we have Mo = M* = O.
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Next we want to study minimal extensions of V(N, 0) which do not improve
on the quality

M ~= inf{R i :Ie E P : II F .-fJ l ;, . 1).,(.
Rl
~J

of approximation on V(N, (L), but do guarantee the existence of a best
approximation. It is clear from Goldstein's terminology that only minimal
extensions of V(N,0) possess stabilized best approximations. Similar to
Rice's approach in [4] we define the parameter sets

0, \:Ix EX},

which then give the following result.

LEMMA. Let C E Po with L/J(x) 0 'Ix EO X. Then e E po.

Proof Since P + there exists a vector C1 E P such that

and for E > °
we define

o \:IXEX

for sufficiently small E 0. Clearly Cc ->- e for E -~ 0, and furthermore

'VEE (0, "0)'

Defining the constants

MO = inf{f3 I :lc E po: F".c - r 13:,
Al* O~= sup{f3 I ~e E P*: BaCx) -' j(x) L/J"(x)1 < ,8Li,"(x) \Ix Xf],

it follows with the above lemma that AIO M*
we have a vector c E p* such that

lvI, for jf E :> 0 arbitrary

. S,,(x) -- j(x) L,,"(x)1 < (M* + E) L/J"(X) 'Vx ric Xi

and thus c E po and II F",c - III M* + E.

VO(N, fJ..) = FJPO) C R(x) is quasi minimal in the sensc that any set

K}C po

is compact in RN, and P is dense in po. Furthermore any minimal parameter
sequence (eJ C P contains a subsequence converging to a vector c E po with
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il F".,( -.H M, for details see [5]. VO(N, fJ-) itself is an existence set, the
proof is by Goldstein [I]: Let .Mj ... ~ MO and define

then all Wj are compact, Wi+! C W, and WI . Thus OJ 'Wi 0.
However, VO(N, fJ-) in general is no minimal extension of V(N, fJ-), as

Goldstein has shown in [I] for the case f.L I, and we want to add a different
characterization of minimal extensions.

THEOREM. Ler Icc R(X) alld fJ- I. Then /v/o lvl if and only ilji)r all
E 0 rhere exisrs a pair c1 • c~ fCC po wirh

Proof ( ) this
il Fl.( --II /IJOI
Xv, (\ Xu" and
fixed. Then define

tv!" E

directions is

E and X'I
Fl,' /I'

(',\ - <: I

trivially true, since "'IE 0 jc c= P with
. ( ) Suppose jcl , c~ E po such that
Al° E. i I, 2 and E 0 arbitrary

with A E (0, I) such that rA( I - ,\) b[ tV}",

B"l'\)- I(x) Lul'\),

(I A)/r,\' B,,J'\) I(x) LV1(x)!

O. Clearly C\ E P and

\Ix EX.

and hence M /1.4".

COROLLARY. LerIc R(X) and fJ- = I. Then AlII M* iland only iI/or all
E 0 there exists a pair ('\ , ('~ ('C po with

M* M il and only iffi)r all E 0 rhere exists a vecror (' E po such rhar
I! f~.,. Ii M*'- E and Xv (\ X f -

The proof follows as in the above theorem. We want to give two examples.
First consider approximation of I (x) sine7Tx)1x E C(I), I [ -- I ,~- I] by
functions

}~,c(x) ~= a . sin(7T . ( x i)/(b1 I b", i x i) c R(l).

Here we have 0 ~ MO < M* = M == I. Obviously M* M for any
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continuous function/E C(X): in the general casefE R(X) this may not be so,
as for approximation of the Heaviside function H(x) by regulated rationals

where we have 0 c-= AI Il 1''11* M I.

3. SCHICIE;";T CONDITIONS FOR /11° ,11

The above theorems do not generalize to the case f-L 1 since VIl(N, f-L) is
not asymptotically convex. Therefore we want to give some sufficient condi­
tions which guarantee Mil Ai for sufTlciently large f-L E N, assuming
additional knowledge about the sets S. T C C(X).

The set S < C(X) satisfies condition (Z) with some constant ~ 00, if for
any Sa E S, a ,I = I with a zero at x [' X there exists a sequence Xi ---+ X such
that:

S,,(xJ, vj N(x. a)

and p 0 independent of a and x E X. Then we have the following result.

THEOREM. Suppose the set S < C(X) satisfies condition (Z) for some
constant ~ < 00 and T < C(X) is a Holder set with Holder constant ,\ O.
Thenf(Jr f-L ~/,\ we hare Mil M.

Proof To recall the definition of Holder sets T < C(X), we have the
existence of a number ,\ > 0 such that:

a' .Ix - Yil'\ Vx, Y E X

and for all functions L b E T, !, b I, where again (J 0 is independent of b.
Now let c E Pll such that II F",,, - /'1 Mil. Suppose c == (0, b)' then

nothing has to be proved, since in this case we have F"".(x) 0 Vx EE XI) , and
thus MO = , But M since P

Thus assume c = (a, b)' with .1 a Ii O. Then if Xb =/ we have B,,(x) == 0
for any x E Xu and furthermore a sequence Xj-~ x E Xb such that

-->- 00 for Xj -->- x,

which is impossible, i.e., Xv = .0, and hence

Mil = IIF",,, - IIi:> M.
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Examples for Holder sets arc of course differentiable sets with bounded
(nonzero) first derivatives. Condition (Z) can also be satisfied by assuming
sufficient smoothness of the functions 8 0 S.! a . I; however in applica­

tions it is desirable to keep the set S' OX) fairly simple to control the
condition 1< S'/;\ .

.0\ straightforward choice of course is S' [8] where 0 B C()() is some
approximation to the function / R( X). see Williams [7]. Then we have the
following simple result.

LE\IMA. Lei ,) lB]. 0 IJ C(i) Hilh a/inile /lulIlber 0/ ::.eros ill / R
(Jnd supposc 8 has Tar/or expansions around cach zcro. Then (olldition (7) is
sati.sjied with SOIli(' lJumher ~ L.

But of COLlr~e cundition (7) is sauslied by more general functions like
x . sin(nn C(i) or .\ c= C(1). / [ I. I].

Finally we want to consider the must important application uSll1g
polynomial rationals. Clearly if.',' err} consists of polynomi~ds with
degree If condition 1/) is satislied fur .~: d. and if r consists of poly-
nomials it is ~l Holder sel with constant ,\ I. thus we havc ;\/Il Al for

jL ,d. In the one-dimensional case it is cas\ to show thc following sharper
rcsult.

TllEORL\L Let S [IJ]. 0 B C(1) satisf.i (,o/ldilio/l (/) Ivilh SOllie

/lumher ~ :/~ alJd suppose 8 has no ::.eros 1111 t!le houl/darl' M. I.cr T C C(1)

cOllsist ot'polYl/olllials. ThclI II'C hal'c A/O Millr IL . (/2.

For a prool note that if L r has a zcro at x c' int(1) it is at least of degree
two. 13 being nonzero on ()/ can be satislied by appropriate change of the
interval /; and we note that no a~sumption is made 011 the degree or the
polynomials ill T. Thus the result can be generalized to sets r consisting of
functiol1S with Taylor expansions around the zcros of 8.

The above result compares with Theorem 3.1 in [6]. however in the case
of interpolation approximation ~b considered by Taylor and Williams their
result can immediately be improved in the sense that their cnndition (ii) in
Theorem J.l or our condition ,. B has no zeros on tile boundary 81"' i, not

needed.

Til EORE VI. LeI S [8].
/llI/nber £ x a/ld let T
IL D2. Then )l'e hac('ll"
lrilli 17(.':) 0 'cl.y f.

o 8 CU) satisfy cU/ldiriun (.1') Ililli SO!il('

C(I) consist oj polynomials. Fu!'thermore let
,\ItOi' al/fllllClio/lsf R(I) olthe jim!! / IJ . II

Proof W.l.o.g. let 1
assume 8(0) O. Let c

[0. I]. and in view of the previous theorem
po such that p"., j MO. and let ( 0 such
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that Lu(x) ° "Ix E [ E,O). Such an E °exists since! b = 1 and the
polynomials in T are of finite degree. On [- E, 0) we define B in such a way
that B(x) eft 0, sgn(B(x)) = sgn(Lu(x) "Ix E [- E, 0), and:

lim B(.y)/ L,,(x) = O.
.qO

Put hex) I/i Ltlx): ,f(x)
though h has a pole at x

B(x) . hex), x E [-E, 0). Note that fE R(Ie)
0, and clearly we have

I .

These rather strange continuations of Band h arc necessary to include the
case MU == 0, and note that S c= [B] C CUe), Ie [- E, I] satisfies (Z) with
the same number ~ ceo Thus we get from the last equation:

where the subscripts denote the intervals considered. Hence with the previous
theorem applied for the interval IE we conclude:

,HI.

We wish to remark that all results in this chapter four in fact. ensure the
existence of a best approximation f~"" E V(N, fL) which is a somewhat stronger
result than just the condition A1u l'v1. If furthermore the sets V(N, fL) are
well chosen, i.e., chosen in such a way that the best approximation is non­
trivial, then·-with the exception of the last theorem-we can show that any
minimal sequence (F".,) C V( N, V) converges to a best approximation, for
details see [5].
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