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Let V(N, p) € C(X) be a set of rationals of the form B/L* with B, L € C(X),
L(x) > 0V¥xe X, and peN; we study existence of best approximations for
extensions of V(N, p) into the space of regulated functions R(X). We show
existence of best approximations for an extension Vy(N, p) which is maximal in the
sense that the quality of approximation on Vy(N, n) is the best we can achieve by
any proper rational extension of V(N, p).

Then we consider the problem of characterization of minimal extensions of
V(N, 1) which possess stabilized best approximations. We show that a quasi-
minimal extension VYN, u) similar to that defined by Rice [4, p. 82] in general
is no minimal extension and give a necessary and sufficient condition for VN, 1)
being minimal.

Finally we want to give some sufficient conditions under which VN, p) is a
minimal extension for large enough p e N.

1. REGULATED FUNCTIONS

Let X CR” be a compact connected subset of R™ and consider the class
R(X) of regulated functions f : X — R satisfying:

(i) fis continuous Vx ¢ X;, where X, is l.c. in X
(i) X)) <M < oVxéX,,
(i) f(x) = 30mpx) = MAx)) xe X, .

For a definition of first category (l.c.) sets X; in X see Kantorowitsch—
Akilow [2, p. 23], and the numbers m,(x) and M ,(x) for x € X, are defined by

MAx) = inf(lir}l(innff(.\'j)),
Mi(x) = sup(]in}jys/upf (x5) xeX;,

where the infimum and the supremum are taken over all sequences (x;) ¢ X,
X;—~>X€E Xf .

Condition (i) above should be understood in the sense that although we
assign fixed values to f on X, we still may have multivalued convergence:

f(») = m(x), M(x)]  for y—>xeX;.
12
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RATIONAL CHEBYSHEV APPROXIMATION 13

Examples for regulated functions are f(x) == sin(w/x) € R(I) with f(0) = 0
and f(y) — Ifor y — 0, and in two dimensions

Jx) =@+ v e R(I x I),

x=(u,v) eR?and f(0) = Land f(y) > [0, 1]y — O, with [ = [—1, 1] in
both examples.

Introducing condition (iii) rather than dealing with the multivalues allows
us to define addition and scalar multiplication on R(X) in the usual way; it is
straightforward to show that

(f + &)x) = $(myo(x) + Mp () = f() +-2(x),  xeX;v X,
(BN(x) = Ymg(x) + M(x)) = Bf(x),  xeX;,

which then gives the following result:

LemMmA.  Let f, g € R(X). Then we have

sup | f(x) — g = sup f(x) — g(x).

xE XX,

The proof offers no further insight and is therefore omitted; an important
result however of this lemma is that R(X) is a normed space with the norm

(L1l = sup [ f(X)].

r¢ X

2. REGULATED EXTENSIONS OF RATIONALS

Let S, T C C(X) be two finite-dimensional subspaces of C(X) with
normalized bases {i, ,..., u;} and {v, ,.... v;} and put N = k 4 /. With

k 4
B, = zaiuis Ly = zbivis
i=1 i=1

the classical problem then is to find a best rational approximation to ¢ R(X)
on the set

VN, p) = F,(P) C C(X),
with the mapping
F,: RN = C(X), F,,= B,/L~ ce PCRY, nweN
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and the parameter set
P—ic=(abyeR|acR:  beR,  ib]=1,
Ly(x) >0 VxeX},

and it is well known that V(N, n) in general is no existence set even if we
restrict f e C(X).

Hence we want to consider extensions of F, mapping certain extensions of
P into R(X). To do this we need the following basic assumption: Any function
L,eT, | b]] = 1 has at most a l.c. zero-set X, in X. Furthermore we make the
assumption P == 7 to avoid consideration of trivial cases.

We first consider the following two extensions of P:

Po={ceR¥|acR¥beR,|b]| =1,
POZ{CEP*|EL,GGR(X)}’

and define the numbers
M, =infif[dce Py 1| BJx) — f(x) Ly*(x)| < B Lo(x)|* Vx € X,
Mozinf{}9| AcePy: | F,.—f] <B}

Clearly we have 0 <C M, < M, and we can generalize the lemma in Section 4
of Goldstein [1].

LEMMA. M, =My; M, >0 if and only if fé VN, = F.,(Py;
ce Py and | B(x) — f(x) Ly(x)] < My | Ly(x)|*Vx € X are consistent; and
cePyand|| F, . — f|| < M, are consistent.

The proof is essentially that of Goldstein [1] and hence omitted. It should
be noted that both M, and M depend on the fixed exponent p € N chosen,
and we can interprete the result in the sense that for a fixed w € N the best
quality of approximation we can expect by any proper extension of V(N, u)
is M, , and that this quality actually is achieved on the set VN, u) C R(X).
Thus we want to call Vy(N, ) a maximal extension of V(N, u) and note that
this property does not depend on the specific function /€ R(X) we wish to
approximate.

To give a simple example consider the Heaviside function H € R(I):

+1 for x >0,
H(x) = {} for x =0, xel=[-—-1, +1],
0 for x <0,

and rationals of the form
Fi o= (ax + ap | x D/(by -+ byx) € R(I),

where we have M, = M, = 0.
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Next we want to study minimal extensions of V{(NV, n) which do not improve
on the quality

M=inf{fi3ce P |F, — I < B}

of approximation on V(N,p), but do guarantee the existence of a best
approximation. It is clear from Goldstein’s terminology that only minimal
extensions of V(N, p) possess stabilized best approximations. Similar to
Rice’s approach in [4] we define the parameter sets

P* = {ce Py Lyx) = 0,Vxe X},
PP={ceP* ) CPici—>c, b, =8 K< oo,

il TR

which then give the following result.

LEMMA. Ler c € Py with Liy(x) =: 0 Vxe X. Then c e PP,
Proof. Since P == & there exists a vector ¢; € P such that
Lytx) > 0 VxelX

and for € > 0

we define
cc=(a,{h -+ eb}j| b+ eby]) e P

for sufficiently small € >= 0. Clearly ¢, — ¢ for € — 0, and furthermore
| Fed )] = | BA/Lyfx) << b 1 eby | - 1, (X)) = K2 0
Ve € (0, €).
Defining the constants
M® = inf{B|3ce P': F, . — [l < B
M* = sup{f | dc € P* : | B(x) — f(x) Ly"(x)] << BL"(X) ¥x & X/,

it follows with the above lemma that MY = M* < M, for if € => 0 arbitrary
we have a vector ¢ € P* such that
CBu(x) — J(X) L)) (M -+ o) LX) VX EX,

and thusce PPand | F,, — [ == M* + e
VOUN, n) = F,(P° C R(x) is quasi minimal in the sense that any set

P& ={ce PYIF,, | << K}CP

is compact in R¥ and P is dense in P®. Furthermore any minimal parameter
sequence (¢;) C P contains a subsequence converging to a vector ¢ € P° with

640/14/1-2



16 V. RULOFF

W F,..— /1 = M, for details see [5]. V%N, ) itself is an existence set, the
proof is by Goldstein [1]: Let M; -» M® and define

W;

e POLIE L ML

then all W, are compact, W,,, C W, and W, / 5. Thus ‘j\W,- FEl

However, VYN, u) in general is no minimal extension of V(N, u), as
Goldstein has shown in [1] for the case - 1, and we want to add a different
characterization of minimal extensions.

THEOREM. Let f'& R(X) and p - 1. Then M® - M if and only if for all
€ - 0 there exisis a pair ¢, . ¢, € P with

Fi. [ MY e i 1.2 and X, 0 X,

A

Proof. (-+) this directions is trivially true, since Ve -0 Jce P with
WFy.— /! M" - e and X, = <. (==) Suppose ¢, .c¢se P® such that
Xy X, ooand [ F o fE MY e i 1,2 and € - O arbitrary
fixed. Then define

TNEEER £ 8 . U VO Y
with A€ (0, 1) such that 7, = (1 — A) b, — Ab,'| 0. Clearly ¢, € Pand
CBo(x) — f(x) Ly (x)
(=Nt B x) ) Ly (O] 0 A B (x) o fLy) Ly (v
S AMY el Ly (x) Vae X,
and hence M 1 F,, - /i - MY
COROLLARY. Let f'e R(OX)and p == 1. Then M = M* if and only if for all
€ - 0 there exists a pair ¢, ¢s € P® with
Fie S MY e i L2 and X, 00X, CX,.

M* == M if and only if for all € -0 there exists a vector ¢ € P® such that
WFy, ~fI T M* ~eand X, N X; = 7.

The proof follows as in the above theorem. We want to give two examples.
First consider approximation of f(x) == sin(mx)/x € C(I), I - [—1, +-1] by
functions

Fi.dx) == a - sin(m - x )(by | by x 1) ¢ RU).

Here we have 0 — M° < M* = M = 1. Obviously M* = M for any
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continuous function f'e€ C(X): in the general case f ¢ R(X) this may not be so,
as for approximation of the Heaviside function H(x) by regulated rationals

Fix) = (@ x — a5 | x )by 1 by x1)e R(),

where we have O —= M- M* < M - |.

3. Surrictent CONDITIONS FOR AM® M

The above theorems do not generalize to the case p = | since FUN, p) is
not asymptotically convex. Therefore we want to give some suflicient condi-
tions which guarantee A" - M for sufliciently large p € N, assuming
additional knowledge about the sets S, T'C C(X).

The set § << C(X) satisfies condition (Z) with some constant ¢ << oo, if for
any B, €S, la ] =1 with a zero at x € X there exists a sequence x; — x such
that:

PBx) =pix; - x 8 Y > Nix,a)
and p > 0independent of a and x € X. Then we have the following result.
THEOREM. Suppose the set S < C(X) satisfies condition (Z) for some

constant & < o0 and T << C(X) is a Holder set with Holder constant X > 0.
Then for p > /A we have M® == M.

Proof. To recall the definition of Holder sets 7 < C(X), we have the
existence of a number A > 0 such that:

[Lyx) — Ly( ¥}l o fx —plt Yy yeX

and for all functions L, € 7, b == |, where again ¢ >> 0 is independent of 5.
Now let ¢e P® such that || F, . — fil == M. Suppose ¢ = (0, b)" then
nothing has to be proved, since in this case we have F, (x) = 0 Vx ¢ X, ,and
thus MO = /" . But M = /] since P + .
Thus assume ¢ = (a, b) with | a|i > 0. Then if X, < we have B,(x) = 0
for any x € X, and furthermore a sequence x; — x € X, such that

UF, ol 2= BAx)IL(x;) 22 p/(lali- o) fx — x; 154
—> 00 for x;— x,
which is impossible, i.e., X, = =, and hence

M= F,. —fl = M.
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Examples for Holder sets arc of course diflerentiable sets with bounded
(nonzero) first derivatives. Condition (Z) can also be satistied by assuming
sufficient smoothness of the functions B, =S." « * - 1: however in applica-
tions it is desirable to keep the set S - C(X) fairly simple t¢ control the
condition ;¢ - SVA.

A straightforward choice of course is S [B] where O = B« C(X) is some
approximation to the function /< R(X ). see Williams [7]. Then we have the
following simple resuit.

Lemma,  Ler S - [B]0 o Be CU)with u finite number of zeros in 1 TR,
and suppose B has Tavior expansions around cach zero. Then condition (7)) is
satisfied with sonie number £ 7 .

But of course condition (7) is satistied by more general functions like
x-singmyys Chyor vy e CU) T [ 1, -0l

Finally we want to consider the most tmportant  application using
polynomial rutionals. Clearly it ST C(Y) consists of polynomiuls with
degree ¢ condition (7)) is satisfied for &, and it 7 consists of poly-
nomials it 15 a Hoélder sel with constant A . thus we have A/ - Af for
i - do I the one-dimensional case it is casy o show the following sharper
result.

THEORLM.  Ler S [B). 0O < B=C() satisfy condition (/) with sonw
number L - o and suppose B has ino zeros on the boundary &1 Ler T°C C(1)
consist of polviomials. Then we have MY M forp - {12,

=)

For a proof note that if £« 7 has a zero at x @ int({) it 1s at feast of degree
two. B being nonzero on of can be satishied by appropriate change of the
interval /; and we note that no assumption i1s made on the degree of the
polvnomials in 7. Thus the result can be generalized fo sets 17 consisting of
functions with Tavlor expansions around the zevos of 5.

The above result compares with Theorem 2.1 in [6]. however in the cuase
of interpolation approximation as considered by Taylor and Williams their
result can immediately be improved in the sense that their cendition (i) in
Theorem 3.1 or our condition B has no zeros on the boundary &/ i not
needed.

Taeorem.  Ler S - [B. O 7 Be CU) satisfy condition (Z) with some
number & - o oand let T CC(E) consist of polynomials. Furtherinore let

o 120 Then we hare M M for all functions {¢ R(I) of the form |/ B+
with (x) =0 VYxel

Proof. W.log let 1 {0.1], and imn view of the previous theorem
assume B(0) 0. Letce Posuch that i F, . -/« MY andlete - 0Osuch
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that Ly(x) 0 Vxe€[--¢ 0). Such an € = 0 exists since | Y = 1 and the
polynomials in 7" are of finite degree. On [—¢, 0) we define B in such a way
that B(x) == 0, sgn(B(x)) = sgn(L,(x)) Vxe€[—¢, 0), and:

. NI
]\1}101 B(x)/Ly(x) = 0.

Put /i(x) == 1) Ly(x). . f(x) + B(x) - h(x), x € [—e¢, 0). Note that fe R(/)
though /1 has a pole at x == 0, and clearly we have

e =S e S

These rather strange continuations of B and /r arc necessary to include the
case MY =0, and note that § = [B]C C(/.), 1. -~ [ —¢, 1] satisfies (Z) with
the same number ¢ << o. Thus we get from the last equation:

/"1]0 B Af?( N

where the subscripts denote the intervals considered. Hence with the previous
theorem applied for the interval /, we conclude:

t
MP ML M, M

We wish to remark that all results in this chapter four in fact, ensure the
existence of a best approximation £, . € V(N, ) which is a somewhat stronger
result than just the condition AV = M. If furthermore the sets V(N, n) are
well chosen, i.e., chosen in such a way that the best approximation is non-
trivial, then—with the exception of the last theorem—we can show that any
minimal sequence (£, . ) C F(N. ) converges to a best approximation, for
details sce [5]. j
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